Ir al contenido principal

Unidad VII: Oscilaciones Electromagnéticas

Física II - Oscilaciones Electromagnéticas

Electricidad, Magnetismo y Circuitos - Un blog estudiantil de Ingeniería de Sistemas

Oscilaciones Electromagnéticas

Las oscilaciones electromagnéticas aparecen cuando un sistema eléctrico permite el intercambio continuo de energía entre el campo eléctrico y el campo magnético. El ejemplo más representativo es el circuito LC, compuesto por un condensador y una bobina (inductor).

Principio de Funcionamiento

  • Cuando el condensador se carga, almacena energía en forma de campo eléctrico.
  • Al descargarse a través del inductor, esta energía se transforma en campo magnético.
  • Este proceso se repite periódicamente, generando una oscilación continua.
  • La energía total del sistema se conserva, alternando entre energía eléctrica y magnética.

Circuito LC Básico

Condensador (C) + Inductor (L) = Sistema Oscilante

Frecuencia de Oscilación

La frecuencia natural de oscilación del sistema depende de los valores de la inductancia L y la capacitancia C:

f = 1 / (2π√(LC))

Donde f es la frecuencia en Hertz, L es la inductancia en Henrios, y C es la capacitancia en Faradios

ω = 1 / √(LC)

Frecuencia angular de oscilación

T = 2π√(LC)

Período de oscilación

Circuito LC oscilante

Representación de un circuito LC y sus oscilaciones electromagnéticas

Amortiguamiento en Sistemas Reales

En sistemas reales, la presencia de resistencia produce amortiguamiento, haciendo que la amplitud de la oscilación disminuya con el tiempo.

  • Circuito RLC: Incluye resistencia además del inductor y condensador.
  • Amortiguamiento subcrítico: Oscilaciones que disminuyen gradualmente.
  • Amortiguamiento crítico: Retorno más rápido a la posición de equilibrio sin oscilar.
  • Amortiguamiento supercrítico: Retorno lento a la posición de equilibrio.
Q = (1/R)√(L/C)

Factor de calidad de un circuito RLC

Oscilaciones amortiguadas

Comparación de oscilaciones libres, subamortiguadas, críticamente amortiguadas y sobreamortiguadas

Aplicaciones Prácticas

Estas oscilaciones son fundamentales para el funcionamiento de:

  • Radios y receptores: Circuitos sintonizados seleccionan frecuencias específicas.
  • Transmisores: Generan señales de radiofrecuencia para comunicación.
  • Osciladores electrónicos: Generan señales periódicas en relojes y temporizadores.
  • Sistemas de resonancia: Amplifican señales a frecuencias específicas.
  • Filtros de frecuencia: Seleccionan o rechazan bandas específicas de frecuencia.
  • Circuitos de sintonización: En televisores, radios y equipos de comunicación.

Ejemplo Práctico

Calculemos la frecuencia de oscilación para un circuito LC típico:

Datos: L = 10 mH = 0.01 H, C = 100 μF = 0.0001 F
f = 1 / (2π√(0.01 × 0.0001))
f = 1 / (2π√(0.000001))
f = 1 / (2π × 0.001) ≈ 159.15 Hz

Frecuencia de oscilación resultante

Consideraciones Importantes

  • Las oscilaciones ideales (sin resistencia) serían perpetuas, pero en la práctica siempre hay amortiguamiento.
  • La frecuencia de resonancia es crítica para el diseño de circuitos de comunicación.
  • Los materiales y la construcción afectan las pérdidas y la eficiencia del sistema.
  • En aplicaciones de alta frecuencia, deben considerarse efectos parasitarios.
Aplicaciones de oscilaciones electromagnéticas

Equipos de radio que utilizan principios de oscilación electromagnética

Comentarios

Entradas populares de este blog

¡Bienvenidos a mi blog de Física II!

Unidad II: Campo Eléctrico y Ley de Gauss

Unidad V: Corriente Eléctrica